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Summary

1. The evolution of continuous traits is the central component of comparative analyses in phylogenetics, and the

comparison of alternative models of trait evolution has greatly improved our understanding of the mechanisms

driving phenotypic differentiation. Several factors influence the comparison ofmodels, and we explore the effects

of random errors in trait measurement on the accuracy ofmodel selection.

2. We simulate trait data under a Brownian motion model (BM) and introduce different magnitudes of random

measurement error. We then evaluate the resulting statistical support for this model against two alternative

models: Ornstein–Uhlenbeck (OU) and accelerating/decelerating rates (ACDC).

3. Our analyses show that even small measurement errors (10%) consistently bias model selection towards

erroneous rejection of BM in favour of more parameter-rich models (most frequently the OU model).

Fortunately, methods that explicitly incorporate measurement errors in phylogenetic analyses considerably

improve the accuracy ofmodel selection.

4. Our results call for caution in interpreting the results of model selection in comparative analyses, especially

when complexmodels garner onlymodest additional support.

5. Importantly, as measurement errors occur in most trait data sets, we suggest that estimation of measurement

errors should always be performed during comparative analysis to reduce chances of misidentification of

evolutionary processes.

Key-words: Brownian motion, comparative methods, macroevolution, measurement error, model

selection, Ornstein–Uhlenbeck

Introduction

Comparative phylogenetic methods are the foundation of

many ecological and evolutionary analyses. Recent advances

have produced increasingly complexmodels that help to evalu-

ate alternative macroevolutionary hypotheses on mechanisms

of trait evolution (Beaulieu et al. 2012; O’Meara 2012). Such

models of continuous trait evolution are used to address an

increasing number of questions in evolutionary biology, such

as key innovations in the ornamental traits in birds (Maia, Ru-

benstein& Shawkey 2013), rates of environmental niche evolu-

tion in fish (Litsios et al. 2012), evolution of niche preference

in plants (Schnitzler et al. 2012; Kostikova et al. 2013), body

mass evolution in mammals (Cooper & Purvis 2010;

Lartillot &Delsuc 2012) and constraints on phenotypic change

in lizards (Smith et al. 2011). Among the range of stochastic

models proposed to describe the evolution of continuous traits,

the Brownian motion model (BM; Edwards & Cavalli-Sforza

1985; Felsenstein 1985; Pagel 1999; Blomberg, Garland & Ives

2003), the Ornstein–Uhlenbeck process and accelerating vs.

decelerating rates of character evolution model (ACDC;

Blomberg, Garland & Ives 2003) are the most widely used.

Although recent developments have opened the door to other

options, such as jump processes (Eastman et al. 2013; Landis,

Schraiber & Liang 2013) or time and lineage-dependent mod-

els (Eastman et al. 2011; Lartillot & Poujol 2011; Venditti et

al. 2011; Beaulieu et al. 2012; Ingram&Mahler 2013), the sim-

pler BM, OU and ACDCmodels remain remarkably popular.

The BM model describes the unconstrained random evolu-

tion of a trait along the branches of a phylogenetic tree, in

which the variance of observed trait values of extant species is

proportional to the elapsed time of evolution and a rate param-

eter r2. Alternatively, the OU model combines the stochastic

component of BM with an attraction parameter (a) that leads
trait values to and maintains them around an optimum (h).
Finally, the ACDC model allows temporal variation in the

rate of evolution by varying r2 through time based on a
*Correspondence author. E-mail: nicolas.salamin@unil.ch

†Equal contributions.

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,

which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and

no modifications or adaptations are made.

Methods in Ecology and Evolution 2015, 6, 340–346 doi: 10.1111/2041-210X.12337

http://www2.unil.ch/phylo/bioinformatics


parameter g. The resulting rate of evolution decreases with

time if g > 1 and increases with time when g < 1 and the

parameter g affects r2 exponentially. The evaluation of com-

peting evolutionary hypotheses involves the comparison of

models in a maximum-likelihood framework, using measures

of model fit such as the Akaike information criterion (AIC)

and likelihood ratio tests (LRT). The BM model is typically

the null hypothesis that is tested against OU, ACDC and any

other more complex models of trait evolution (O’Meara 2012).

In comparative analyses, model inference is as important as

the accurate estimation of the parameters because support for

a particular model, for example OU over BM, fundamentally

alters the interpretation of the evolutionary process studied.

All three models are widely used in comparative analysis to

test alternative evolutionary hypotheses of trait evolution,

although their biological interpretation remains to some extent

ambivalent. For example, patterns of trait evolution resembling

BM can result from both genetic drift and directional selection

where the direction of selection fluctuates randomly through

time (Felsenstein 1988). On the other hand, when natural selec-

tion towards both an optimum and random drift act on a phe-

notypic trait (Lande 1976; Hansen 1997; Butler & King 2004)

or when neutral evolution occurs in a constrained part of mor-

phospace (Wiens et al. 2010; Crisp & Cook 2012), then an OU

model might provide a better fit to the data. The attraction

parameter in the OU model is often interpreted as strength of

selection acting on a trait, whenOU is used as amodel for stabi-

lizing selection (Hansen & Martins 1996). The ACDC model

represents a situation in which there is an increasing constraint

on evolutionary change through the course of evolution as a

result, for example, of niche filling (Blomberg, Garland & Ives

2003). Nevertheless, most frequently, the BMmodel represents

a null (neutral) hypothesis of trait evolution and is tested against

more complexOUandACDCmodels.

Measurement error (ME) in trait values substantially affects

parameter estimation in analyses of continuous trait evolution.

It leads to underestimation of phylogenetic signal and overesti-

mation of rates of evolution (Ives, Midford & Garland 2007;

Felsenstein 2008; Revell & Reynolds 2012). Such ME, follow-

ing the Ives, Midford & Garland (2007) definition, derives

from the intraspecific variability of natural populations and

from instrumental imprecision (Garamszegi & Møller 2010).

In the following, we will refer to ME as the relative deviation

of an estimated trait value from its true value (i.e. (lsample –
ltrue)/ltrue). In particular, limited sample size combined with

intraspecific variability has a strong impact onME around the

estimated mean of a species trait value. To provide an empiri-

cal example, the mean body mass of a crab-eating macaque

(Macaca fascicularis) is 2�9 kg with intraspecific variability

(standard deviation) of 1�2 kg (Fitch 2000). If we were to

obtain the mean body mass of macaques by measuring only

one individual and assuming that intraspecific variability is

normally distributed (N(l = 2�9, r = 1�2)), then we would

expect an ME of 33% (here calculated as (lsample – 2�9)/2�9).
The expected ME would decrease to 15% and 11% with sam-

ple sizes of 5 and 10 individuals, respectively (Fig. 1). Only a

sample larger than 45 individuals would result in an expected

ME <5%.Notably, these expectations forME do not incorpo-

rate instrumental imprecision or sampling biases. Thus, we can

expect ME to be ubiquitously present in empirical data sets

(Lynch 1991), potentially reaching substantial quantities.

Recent advances in comparative methods make possible an

explicit account of ME and significantly improve parameter

estimation under different evolutionary models (Ives,

Midford&Garland 2007; Felsenstein 2008;Revell &Reynolds

2012).While the biases on parameter estimates induced byME

are considerably reduced by these methods, the impact of ME

(ignored or accounted for) on the accuracy of model selection

is not well understood. In this study, we investigateME-driven

bias to determine whether the underlying BMmodel is reliably

recovered, compared to alternative, parameter-rich OU or

ACDC models. We perform maximum-likelihood optimiza-

tions of BM, OU and ACDC with different degrees of ME,

which is simulated to reflect the expected quality of most phe-

notypic data sets. The analyses are carried out with special

emphasize onmodel selection while (i) ignoring the presence of

error, (ii) assuming error to be known and (iii) estimating error

from the data. Based on our findings, we provide guidelines

that evolutionary biologists should follow to reduce the risk of

model misidentification when inferring evolutionary mecha-

nisms during comparative analysis.

Methods

We simulated a continuous trait that evolved under Brownian motion

along the branches of phylogenetic trees to examine how the presence

of ME affects model selection. We simulated trees of different sizes

using the TreeSim R package (R Development Core Team 2011; Sta-

dler 2011) under a range of extinction and taxon sampling settings with

1000 replicates for each combination of parameter values (24 000 trees

in total; see Table 1 for details). We rescaled the tree height of all trees

to one to have comparable rates across trees (Revell 2010).

Fig. 1. Effect of sample size on the amount of measurement error

(ME) when estimating a species mean trait value in the presence of

intraspecific variability. The black line indicates the expected ME for a

given sample size in Macaca fascicularis with true mean body mass

equal to 2�9 kg, and known intraspecific variability is �1�9 kg. Dots

represent distribution ofME for the different sample sizes.
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On each tree of size n, we simulated a continuous trait with the R

package phytools (Revell 2012) under a BM model with evolutionary

rate parameter (r2) equal to 2�5 to generate a vector a = [a1, . . ., an] of

normally distributed trait values. We then exponentiated a to obtain a

vector of log-normally distributed trait values, x, as observed for most

morphological traits (e.g. body size). We then altered the vector x to

introduce different amounts ofME, and thus, ME operates at the scale

of the original data rather than at the log-transformed scale. This was

achieved by sampling for each species i a new trait value x’i from a nor-

mal distribution centred on xi with a standard deviation yielding on

averageME is 1, 5, 10, 15, 20, 25, 30, 40 and 50%of the respective trait

value (for the details see Appendix S1). We emphasize that while the

averageMEwas fixed, this procedure resulted in differentME for each

species, thus accounting for the fact that measurement errors are typi-

cally variable among extant species. Finally, we log-transformed the

vector of altered trait values x’ to obtain a’ used in subsequent analyses.

We evaluated models using the Geiger package (Harmon et al.

2008) because it can readily incorporate predeterminedME or estimate

it. In Geiger, ME is added to the respective variances in the phyloge-

netic variance–covariance matrix. All data sets were analysed by fitting

a BM model (used to generate the original data), an OU model (with

two additional parameters a and h) and an ACDC model (also with

two additional parameters g and z0) using maximum likelihood. We

compared the fit of the three models using two approaches: the likeli-

hood ratio test (LRT) to assess whether OU or ACDC were signifi-

cantly preferred over BM (P value <0�05) and the Akaike weights

(Burnham&Anderson 2004) to quantify the relative fit of each model.

We evaluated the models under three scenarios that assumed: (i) the

simulated data held no ME, (ii) ME was estimated from the data, and

(iii) the average ME across species is perfectly known, that is, using an

average ME that was imposed upon the data during simulation. The

code for simulating and analysing the data is available at http://

www2.unil.ch/phylo/bioinformatics.

To demonstrate the importance of incorporating ME when recon-

structing trait evolution in empirical data sets, we re-analysed a data set

of primates (including the crab-eating macaque mentioned above)

obtained from Harmon et al. (2010). The data set included a dated

phylogeny and body mass values for 216 species. We used a cubic root

and log transformation to normalize body mass (as in Harmon et al.

2010) and ran a maximum-likelihood optimization using Geiger under

BM,ACDCandOUmodels.We initially ran the analyses assuming no

error in the trait data and subsequently repeated them with ME esti-

mated from the data. Finally, we used the AIC weights as a measure of

Table 1. Simulation settings

Type Parameter values

Tree sizes 25, 50, 100, 250

Extinction rate 0, 0�3, 0�9
Sampling fraction 0�5, 1
Measurement error,% 0, 1, 5, 10, 15, 20, 25, 30, 40, 50

All pairwise combinations of parameters were used to simulate the trait

data. Each simulation settingwas replicated for 100 tree topologies.
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Fig. 2. Results of model selection for simulated data on phylogenetic trees containing 25, 50, 100 and 250 taxa. Data sets were simulated under the

BMmodel, and both the BMandOUmodels were fitted to each simulated data set. False positives were identified as simulated data sets that rejected

the true BM model using a likelihood ratio test with a significance threshold of 0�05. Bar plots indicate rates of false positives when measurement

error is ignored (white), estimated (grey) or known (black).
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model fit and compared the results obtained when ignoring and esti-

matingME.

Results

MODEL SELECTION

The accuracy of model selection is greatly affected by the pres-

ence of ME (Fig. 2 and Appendix S2). Indeed, the support for

the alternative models compared to BM (i.e. the correct model)

increases with increasing ME. We observe this bias across all

simulations, regardless of the number of tips, taxon sampling

and speciation process used to generate the trees (Appendix

S2).

Among the three scenarios (i.e. ME ignored, estimated or

known), the accuracy ofmodel selection is poorest whenME is

ignored (Fig. 2). For instance, the proportion of false positives

in trees of 100 tips (regardless of the birth–death settings and

taxon sampling) exceeds 0�1 with as little as 5% ME in the

data. False positives increase with increasing ME and exceed

0�5 withME = 15% and 0�8 withME = 25%. The bias towards

erroneously rejecting BM against more parameterized models

also becomes stronger for larger trees. For example, with 250-

species trees, the rate of false positives exceeds 0�2 even with

ME as low as 5% (Fig. 2). The rate of false positives also

appears to increase in the presence of high extinction rates. For

instance, in trees of 100 tips, the rate of false positives raises

from 0�08 to 0�2 as the extinction rate increases from 0 to 0�9
(Appendix S2). Incomplete (random) taxon sampling, on the

other hand, does not appear to have a significant impact on the

accuracy of model selection, and the rate of false positives is

usually even lower than in trees with complete sampling

(Appendix S2).

Much of the bias towards spurious support for the more

parameter-rich models is, however, avoided by incorporating

estimated or true ME in the model. Noticeably, rates of false

positives remain low compared to those obtained when ignor-

ing theME (Fig. 2). WhenME is known and accounted for in

the analyses, the rate of false positives remains below 0�05 even
with ME = 20%. However, rate of false positives rapidly

increases as the ME exceeds 30%, and this is particularly evi-

dent on large trees (Fig. 2 and Appendix S2). Estimating error

from the data also drastically reduces the rate of false positives

(Appendix S2). While the rate of false positives generally

exceeds 0�05 withME around 10%, it stabilizes around 0�1–0�2
with largeME.

The results from the Akaike weights show that the relative

likelihood of BM decreases in favour of OU as unaccounted

ME increases (Fig. 3). The Akaike weight of the ACDCmodel

is generally below 0�25 and is not affected by tree size or by
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Fig. 3. Trends in Akaike weights for three evolutionary models as tree size increases. Black colour indicates AICc support for Brownian motion

(BM)models, dark grey for Ornstein–Uhlenbeckmodels (OU) and light grey for accelerating/decelerating rates (ACDC)models. Dashed line repre-

sents the highest possible Akaike weight for BM model, which can be calculated since BM represents a special case of both OU and ACDC. This

demonstrates that in the absence ofME,AIC can confidently distinguish between evolutionarymodels.

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 6, 340–346

Model selection and measurement error 343



ME. The relative likelihood of OU can exceed 0�5 already at

ME = 15%on a tree with as few as 100 tips (Fig. 3).WhenME

is accounted for (estimated or known), the Akaike weights

consistently support the BM model over alternatives (Appen-

dices S3 and S4).

PARAMETER ESTIMATION

Unaccounted ME on trait values biases the estimation of the

model parameters. Under BM, the evolutionary rate parame-

ter r2 is overestimated (Appendix S5). Furthermore, when an

OU process is fitted to the data, the bias appears to affect both

the estimated rate of trait evolution and the selection parame-

ter a (Appendix S5). Indeed, we observe an upward bias of r2

coupled with an overestimation of a as ME exceeds 30%

(Appendix S5). Correction for ME (known or estimated) sub-

stantially improves parameter estimation and yields estimates

of the rate parameter of the BM model centred on the true

value (Appendix S5).

Estimated errors generally provide an effective approxima-

tion to the true error in the data sets. However, we observe

overestimation of errors as trueME exceeds 25% (Fig. 4). The

precision of the estimation of ME is negatively correlated with

the magnitude of the error. For example, with ME = 5%, the

range of estimated errors is ~0–15%, while it ranges from ~0 to
42%withME = 25% (Fig. 4).

CASE STUDY

The analysis of the empirical example of primate body size evo-

lution ignoring ME showed strong evidence against the BM

model (P-value <0�01, Akaike weight 0�028) and in favour of

ACDC and OU. OU and ACDC obtained a similar support

(Akaike weights 0�486 for both, Appendix S6). When correct-

ing for ME, the statistical support in favour of OU drastically

dropped (Akaike weight 0�058) and BM was not rejected

against OU (P-value = 0�999). TheACDCmodel was strongly

supported (Akaike weight 0�777) and outperformed BM albeit

with a higherP-value (P-value < 0�023).

Discussion and guidelines

Measurement error affects comparative analyses by biasing the

estimation of model parameters (Ives, Midford & Garland

2007; Felsenstein 2008; Revell &Reynolds 2012). However, we

demonstrate that it also biases model selection by leading to

erroneous rejection of the simpler (but correct) BM model,

especially in favour of the alternative OU model. The disrupt-

ing effect of ME on the covariances among species generated

under a BMprocess results in overestimated evolutionary rates

and underestimated phylogenetic signal (Ives,Midford &Gar-

land 2007; Revell, Harmon & Collar 2008), as well as compro-

mising the fit of the BMmodel. This increases rates of rejection

of the neutral (BM) model and causes erroneous conclusions

regarding the processes underlying trait evolution. This is

problematic given that in most empirical studies, the support

for the alternative OU model is often cited as an evidence of

stabilizing selection.

Furthermore, the artifactual support for the OU model,

paired with high values of the evolutionary rate parameter a,
provides the false impression that the trait has evolved under

strong selective pressure towards an optimal trait value, even

though neither has played a role in the evolutionary history of

the trait. The severity of the bias further increases in the pres-

ence of high relative extinction rates, whereas incomplete taxon

sampling can, if anything, slightly reduce the bias. This is likely

a consequence of the distribution of branching times, which

tend to be closer to the tips under a birth–death process (Rick-

lefs 2007), while branching times are biased towards older ages

in the case of random incomplete sampling (Yang & Rannala

2006). The disruption of the covariances, which will reduce any

phylogenetic signal and lead to the acceptance of the OU

model, as seen before, is therefore stronger for trees generated

under a birth–death process. The relative likelihood of the

ACDC model does not improve with increasing ME. This is

probably because the underlying process behind the ACDC is

still Brownian motion, albeit with temporal variation in the

evolutionary rate, thus implying a level of phylogenetic signal

similar to the BMmodel.

We show that incorporating ME (estimated or known) in

the analysis significantly improves both model selection and

parameter estimation. However, obtaining accurate ME esti-

mates is difficult because ME is estimated from sparse data,

that is a single observation per species. Better performance is

observed when the ME is known and accounted for in the

analysis, at least when ME <30%. For ME >30% estimated

ME appears to reduce the number of false positives. This is

possibly due to the overestimation of the ME (Fig. 4), making

the phylogenetics signal stronger. Although we did not explore

this, current implementations of comparative models allow the

user to set species-specific ME, thus increasing the amount of

information provided in the model. However, this is typically

carried out by adding additional variance terms to the diagonal

of the VCV matrix, but this is unlikely to be the appropriate
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representation of the intraspecific variability. Future methodo-

logical advances should therefore consider incorporating

explicitly multiple observations for each species to model

changes of intraspecific variances along the phylogenetic trees

(Salamin et al. 2010).

Intraspecific variation is present in all taxa, which we have

illustrated with the case of the crab-eating macaque, and mea-

suring one or very few individuals is far from optimal to esti-

mate accurately a biological trait. Our simulations and the

analysis of primate body mass evolution further show that

comparative analyses aremost reliable when there is no or very

little ME in the data. With our empirical analysis of primate

body size, we demonstrated that accounting forME can signif-

icantly change the relative support for eachmodel and decrease

our confidence in rejecting BM. Therefore, the general recom-

mendation is to seek large sample size (i.e. more individual

measurements per species) to practically reduce the amount of

ME present in the data set and account for the residual ME

during comparative analysis. Our results suggest that ME

should always be incorporated in comparative analyses. Infor-

mation aboutME can be retrieved frommultiple observations,

data bases, experiments and the literature. However, when this

information cannot be retrieved from independent sources,

ME should be estimated rather than ignored. In addition,

awareness of the potentially high rate of false positives should

prompt researchers to critically interpret the results of likeli-

hood tests that reject BM in favour ofmore complexmodels.
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